
Journal of Apphed Mechanics and Techntcal Physics, Vol. 38, No. 3, 1997 

P R O B L E M  O F  D E T E R M I N I N G  T H E  R O U G H N E S S  

F A C T O R  F O R  F L O W  IN A N  O P E N  C H A N N E L  

T. P. Pukhnachova  UDC532.54:517.925 

The description of an unsteady flow of a fluid in an open channel is usually based on a one-dimensional 
system of Saint-Venant equations [1, 2]. The adequacy of this mathematical model depends, to a considerable 
extent, on the accuracy of assigning the physical parameters that enter this model. In particular, the Chezy 
coefficient, or the roughness factor expressed in terms of this coefficient, is one of the most important 
parameters. Precisely this parameter is difficult to measure immediately. The roughness factor is often 
considered a constant whose average value is found from field observations using the Chezy formula [1, 2]. 
Another approach was proposed by Voyevodin and Nikiforovskaya in [3] where a series of field observations is 
used to construct a resolving function. This function was then minimized, and its minimum value was taken 
as the roughness factor. 

In the present paper, the Chezy coefficient is assumed to be a function which depends on the spatial 
variable. The problem of defining this function is regarded as a coefficient inverse problem for a hyperbolic 
system of equations. The theory of this type of problems was developed by Romanov [4]. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We shall consider a system of Saint-Venant equations under the 
following assumptions: the flow has a subcritical velocity v and flows in a rectangular channel with constant 
cross section and zero slope of the bottom. The width of a free surface B is a known constant. This special 
model allows one to simplify mathematical procedures. The more general case and the necessary changes in 
the proof are considered in Sec. 4. 

Let us denote time by t, the coordinate along the channel by z, the level of the free surface which 
coincides with the depth at zero slope of bottom by h(x, t), the flow rate by Q(x, t), and the gravity acceleration 
by g. We assume that a dry channel is absent, i.e., h > 0 for all x and t. 

The Chezy coefficient C(z) that determines the friction force can have a different form, depending on 
the hydraulic formula used. For example, the roughness factor n(x) can be related to C(x) by the Manning 
formula: C = RllS/n(x) [R = R(h) is the hydraulic radius]. We shall assume that Q is a constant-sign 
function. Without loss of generality, we can assume that Q > 0. The subcritical flow velocity makes it possible 
to assume the Froude number Fr = (v2/ghmea) to be much smaller than unity. Therefore, the convective term 
O(v2/2g)/Ox which enters the equation of dynamic equilibrium can be disregarded. Under such assumptions, 
the system of Saint-Venant equations is of the form 

B Oh OQ OQ Oh 1 Q2 
-~ + ~x = O, Ot +gBh'~x = g (1.1) C2(x) h BR" 

The Chezy coefficient C(x) which enters the right-hand side is to be determined. Let us introduce a function 
a ( x )  = 

For system (1.1), we shall consider the initial boundary-value problem 

h(O,t) = f l( t ) ,  Q(0, t) = f2(t), fl,f2 E C2[0,2T], fl,f2 > 0; (1.2) 

h(x,T)=~o(x), ~0 E C2[0, n], ~ 0 > 0 ,  O<.x<.L, O<~t<~2T (1.3) 
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with any final T and L. 
Relations (1.1) and (1.2) represent the standard Cauchy problem in terms of the variable x for a quasi- 

linear hyperbolic system, and we call it the direct problem. Condition (1.3) is required for resolvability of the 
inverse problem. 

For system (1.1), we introduce the corresponding Riemann invariants: 

r = ~Bgl/2h3/2 + Q, s = -~Bgl/2h3/2 + Q. 

The functions Q and h can be readily expressed in terms of r and s: 

Q _ r + s  h = [ 3 ( r =   -)12/3 
2 ' [ 4Bgl/2 J 

The direct problem (1.1) and (1.2) for the Riemann invariant is written as the Cauchy problem in terms of 
Z :  

Or Or --a(x)v(r, s), as u(r as O--'~ + u(r--  s)-'~ = cOx - s)ff[ = a(x)v(r,s); (1.4) 

r(O, t) = ~Bfl( t)(gf l( t))  1/2 + f2(t) = to(t), (1.5) 

s(O, t) = -2Bf l ( t ) (g f l ( t ) ) l /2  + f2(t) = so(t). 
, )  

Here 
( 4Bg )1/3 Q2(r,s) g ( r + s )  2 g 

u ( r - s ) = ( g h ( r ' s ) ) - l / 2 =  \ 3 ( r - s )  ; v ( r , s ) -  h ( r , s ) B R -  ( r - s )  3R" 

We shall write, instead of (1.3), an additional condition in the form 

r(x, T) - s(x, T) = 3Bgi12(cpo(x))3/2 = ~(z). (1.6) 

It is well known that problem (1.1) and (1.2) in terms of Q and h and problem (1.4) and (1.5) in terms 
of r and s are equivalent. Note that condition (1.2) ensures the validity of the inequalities u > 0 and v > 0 at 
least for small x. 

In what follows, the problem of defining the functions r(x, t), s(x, t), and a(x) that satisfy relations 
(1.4)-(1.6) will be called the inverse problem. 

A transition from the desired functions to the Riemann invariants can be performed for any quasi- 
linear hyperbolic system with two independent variables. In studying system (1.1), we take into account the 
concrete form of the functions r(x, t) and s(x, t) and how the desired coefficient a(x) enters the right-hand 
side. First, this allows us to propose an additional condition having a reasonable physical sense and, second, 
to obtain an additional relation to define a(x). Therefore, although the further considerations are applicable 
to a sufficiently arbitrary quasi-linear system, each particular case needs a separate consideration. 

2. E x i s t e n c e  and  U n i q u e n e s s  of  t he  So lu t ion .  The solution of the inverse problem (1.4)-(1.6) 
is closely related to the solution of the direct problem (1.4) and (1.5). The direct problem has been studied 
by many authors. In particular, Rozhdestvenskii and Yanenko [5] elucidated the resolvability conditions and 
indicated the existence region for the solution. For this purpose, they developed an iteration process and 
established its convergence and, in addition, they showed that the solution is uniformly limited together with 
secondary derivatives and found the domain in which the solution is unique for all iterations. Using these 
results, we obtain the conditions that are necessary to resolve the inverse problem. 

L e m m a .  For the inverse problem (1.1)-(1.2) to be resolved, it is necessary that the initial and boundary 
data (1.2), (1.3) satisfy the conditions 

~0(z) e C2[0, L], 0t~~ - Okfl(T) (k = 0, 1 2), 
Ox k Ot k ' 

413 



a(O) g f ( (T)  
BR f2(T-----) + f'2(T) + 9 B ~ 0 ( 0 ) ~ ( 0 )  = 0. 

Here and below, the dash refers to a variable. The latter equality can be used to find the quanti ty a(0). 
The characteristics tr(~, x, t) and ts(~, x, t) of system (1.4) are the solutions of the Cauchy problem: 

Or, Ots 
0---( = u(r(~,t~(~,x,t)) - s(~,G(~,x,t))), O~ = -u(r(~, ts(~,x, t))  - s(~,ts(~,z,t))),  

t~(~:, z ,  t) = t, t s ( z ,  z ,  t) = t. 

Let us denote by V a set of functions f (x ,  t) C=[0, L1 • [0, 2T] such that H/[Ic2 < M. For U, we shall find the 
domain G(M) in which the solution of the inverse problem exists: G(M) = {0 <~ z ~< L, T~(~) ~< t ~< T2(~)}. 
where Tl(~) and T2(~) satisfy the following Cauchy problems: 

OTI OT2 
= max{u},  TI(0) = 0, - -  - max{u},  7'2(0) = 2T. 0~ o~ 

T h e o r e m  1. Let the [unctions f l ,  f2, and r satis[ying the conditions o[ the /emma. Then, it is 
possible to indicate positive constants L1 and T1 such that  problem (1.4)-(1.6) has a unique solution in th~ 
GI(M) C G(M) domain subject to the conditions 

a(z) e 61[0, L1], r,s e Ce(GI(M)). 

P r o o f .  We shall define the new functions p and h as follows: p = Or/Ot and q -- Os/Ot. The relations 
they satisfy are readily derived from (1.4) and (1.5) by differentiating with respect to t: 

op  op  
O'-x + u(r -- s)~-~ = -a(z)v l (r , s ,p ,q)  -- ul(r,s,p,q),  

(2.1) 
ozOq u(r - s)-~Oq = a(z)v1(r,s,p,q) + ux(r,s,p,q), p(O,t) = r~o(t), q(O,t) = s~o(t). 

Here I~ 1 ---- ( O 1 ) l O r ) p  -{- (OvlOs)q and U 1 : u t ( r  - -  s ) ( p  - -  q). 
It is easy to deduce from (1.4)-(1.6) an additional condition for p and q, which is similar to (1.6): 

-2a(z)v(r(x,  T), s(z, T) ) - (p'( z) 
p(x, T) + q(x, T) = u(r(z, T) - s(x, T)) 

This relation enables one to express the function a(z) via the equality 

- a ( z )  = [(p(z,T) + q(z ,T))u(r(z ,T)  - s(z,T))] + ~o'(z) (2.2) 
2v(r ( z ,T) , s ( z ,T) )  

and, hence, to exclude it f rom the system. It is more convenient to use symbols for subsequent writing. Let 
us introduce the column vectors W(x,  t) = (r(x, t), s(z , t) ,  p(z, t), q(x,t)) and Wo(t) = (r0(t), so(t), r~(t), 
s'o(t)), the diagonal matr ix  D(W) = diag(u(r  - s), - u ( r  - s), u(r - s), - u ( r  - s)), and the column vector 
R whose components  are the r ight-hand sides of Eqs. (1.4) and (2.1) after a(z) is replaced by relation (2.2). 
Finally, we come to the following relations: 

OW(z, t )  
O(W(x,t))OW(o--~'t) R ( W ( x , t ) , W ( x , T ) ) ,  W(0, t) Wo(t). (2.3) 

Oz + = = 
This system does not represent a system of differential equations in the usual sense because of the 

quantities W(z,  T) on the r ight-hand side. Nevertheless, the system can be studied by conventional methods, 
because it permits  the integration over the characteristics. Having made such an integration, we obtain a 
system of integral equations with a variable upper limit x. We shall note here only the major  steps of the 
proof, which is similar to that  given in [5, Chapter  1, w 8]. The  uniqueness of the solution of system (2.3) 
follows from the uniqueness of the solution of a corresponding linear system for the differences in two solutions. 
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The fa~t that tile solution exists can be shown using the iteration process 

Owk+t(x,t) (z,t) 
Ox +O(Wk(x't))OWk+o: = R ( W k ( z ' t ) ' W k ( x ' T ) ) '  wk+l(o ' t )=W~ 

To do this, it is necessary to expand the system through differentiation of all equations with respecl 
to x and to show, by means of the basic system, the convergence of iterations and the required smoothness 
of the limiting solution W G Cl(G1(M)). Hence, r, s e C2(G1(M)), and a e c l [ 0 ,  L1]. 

3. E s t i m a t i o n  of  t h e  C o n d i t i o n a l  Stabi l i ty .  Let us estimate the unknown function a(x) by means 
of the functions defined under certain a priori assumptions. The functions r, s, and q~ are assumed to belong 
to the class K(u, M, L, T) if the inequalities (llrll, [Is[I, IIqo]l) < M and m i n ( r + s ) / >  v > 0 hold for the norm C 2 
on the intervals [0, 2T] and [0, L], respectively. The constant M is assumed to be universal for the entire class. 
We shall introduce a similar class KI(M1, L) for the functions a(z) subject to the condition [la[[cl[O,L] <~ MI. 

T h e o r e m  2. Let there be two coefficients [al(z) and a2(z)] that are the solutions of the inverse problems 
2 2 qa2 K(v, M, L,T), the estimate with given r0,1 s01 . . . .  q~l and r2o, s~, qp2. If a 1 a 2 e K1 ( M1, L) and r~ s~, qo 1 r0, s0, e 

II al - a2[[c ~< C(l lro '  - r llc, + IIso' - s2ollc, + -  21[c,) 

is valid, where the constant C depends only on u, M, M1, L, and T. 
P r o o f .  For the coefficients al(x) and a2(x), one can obtain the vectors W 1 and W 2 as solutions of 

the corresponding direct problem (2.3). We shall denote W = W 1 - W 2. The vector function W satisfies the 
following linear relations: 

OW O Wpt OW 1 
0---~- + D(W1) 0 = ( W , e } - - ~  + EW, Wo(O,t) = W~(t) - W2(t). (3.1) 

Here e = e(W l, W 2) is the new column vector and E = E ( W  1, W 2) is the new matrix; and the angle brackets 
refer to the scalar product.  The components of the vector e are elementary functions of the components of the 
vectors WX(x, t) and W2(x, t). The elements of the matr ix E are elementary functions of the components of 
the vectors Wl(x,  t), Wa(x, t), Wl(x ,  T), and wa(x,  T). Because of the awkwardness, we do not give the exact 
representation; for subsequent analysis, only the fact that  the vector e(x, t) and the matrix E(x, t) belong to 
CI(G) is important.  Integrating over the characteristics, we pass from (3.1) to the system of integral equations 

Z 

f ~ ] - - ~  + E W  (~i, x, t) d~i (3.2) 
0 

(the subscript i refers to the corresponding characteristic). We shall introduce a norm for the function f(x,  t): 

II/ll(z) = max (If(x,t)l, lOf(z,t)/&l),  
0<t<2T 

which is the standard norm for the vector 

IlWll( ) = I I ( W ) d l ( x ) .  
i 

Let Ci be different constants. After conventional procedures (see [4]), Eq. (3.2) yields the estimate IlWll(x) 
C, IlWollcx. Then, from (2.2) it is not difficult to obtain the inequality 

laX(z) - a2(x)l ~< c211Wll(x) + C311 ' -  211c,, 

which yields the desired estimate. 
4. S o m e  G e n e r a l i z a t i o n s .  In formulating the problem in Sec. 2, some assumptions were made to 

facilitate mathematical  procedures. Let us consider the more general cases of problem formulation. 
The width of the free surface can be a function of x [B = B(x)]. This leads to the appearance of a new 

term on the right-hand side of (1.4): 

OB Os Os OB Or Or -a(z)v(r ,s)  + ~,(r = a(z)v(r,s) + O-S + u ( r -  s)-~ = -5~ ~ O~ - s)-~ -b-;v2(r,s). 
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If the function B(x) is sufficiently smooth [for example, B(x) e C2[0, L])], the proofs of Theorems 1 and 2 
remain unchanged. 

One can study the flow behavior not only in a rectangular channel. For example, let the channel be ot 
an arbitrary shape, B = B(h, x). We denote the level of the free water surface by z(x, t) and the level of the, 
bottom at the point x by Zb(X) and introduce a parameter of the channel cross-section area: 

h(z,z) 
/ B(~,x)d~, h ( z , z ) = z - z b ( z ) .  o)( z, :c ) 
0 

The Riemann invariants should then be introduced by the following formulas: 
Z 

r = f ( g B ( C  + t), 
0 

Instead of Eq. (1.4), we obtain 

Z 

s = - f(gB(~, x)~o((, z)) 1/2 d( + Q(z, t). 
0 

Z 

o--7 + o-7 = 0 
Z 

OS (go~l /203 a(x)v(r,S)st_O~/ ~__~(gBoj)l/2d~. 
0 

In this case, the additional information also has the more complicated form 
~o0 

r(z, T) - s(z, T) = 2 f (gB(~, z)w(~, z)) z/2 d~ = ~(x). 
o 

Nevertheless, all the above results hold for this formulation of the problem as well. 
The following remark is concerned with the additional information (1.3). The water-surface level can 

be measured not only on the straight lines t = T, but also on the more general straight lines in the plane x, t. 
Let there be an observer who moves with a given constant velocity v0 along the channel from the point x0. 
It is assumed that v0 can differ from the flow velocity. Additional information should then be specified as a 
function h(x, (x - zo)/vo) = ~0(x). 

The author are grateful to O. F. Vasil'ev and A. F. Voyevodin for the formulation of the problem and 
helpful discussions. 
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